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A lattice Boltzmann model for the compressible Euler equations
with second-order accuracy
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SUMMARY

In this paper, we propose a new lattice Boltzmann model for the compressible Euler equations. The
model is based on a three-energy-level and three-speed lattice Boltzmann equation by using a method
of higher moments of the equilibrium distribution functions. In order to obtain second-order accuracy,
we employ the ghost field distribution functions to remove the non-physical viscous parts. We also use
the conditions of the higher moment of the ghost field equilibrium distribution functions to obtain the
equilibrium distribution functions. In the numerical examples, we compare the numerical results of this
scheme with those obtained by other lattice Boltzmann models for the compressible Euler equations.
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1. INTRODUCTION

The lattice Boltzmann method (LBM) has been developed as an alternative method for computa-
tional fluid dynamics. This method originated from a Boolean fluid model known as the lattice gas
automata (LGA) [1], which simulates the motion of the fluids by particles moving and colliding
on a regular lattice. During the past few years much progress has been made to extend the LBM to
become a tool for simulating many complex fluid dynamics problems, such as multi-phase flow,
suspension flow and flow in the porous media, which are quite difficult to simulate by conventional
methods [2–5]. On the other hand, the LBM has undergone a number of further refinements. A
recent series of studies by Yan et al. showed that the LBGK model could be used to simulate
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wave motion [6], soliton waves [7], Lorenz attractor [8], Burgers equation [9] and the Schrödinger
equation [10]; other investigators have also studied the Schrödinger equation [11] and Poisson
equation [12, 13]. All of these models can be derived by using higher-order moment methods with
a multi-scale technique and a series of partial differential equations in different time scales. In this
paper, a lattice Boltzmann model for the Euler equations is proposed based on this higher-order
moment method.

The LBM starts from the mesoscopic kinetic equation, i.e. the lattice Boltzmann equation governs
macroscopic quantities in fluid flows. The kinetic nature has many advantages over conventional
numerical methods, such as the algorithmic simplicity, the parallel computation, the easy handling
of complex boundary conditions and the efficient hydrodynamics simulations.

A challenging problem is the question of the ability of the LBM to simulate compressible
flows. There are a number of lattice Boltzmann models of compressible flows [14–30]. Alexander
et al. [14] chose a modified equilibrium distribution, allowing a smaller sound speed. Nadiga
[15] proposed a discrete velocity model. Huang et al. [16] used a method with flow-adapted
discrete velocities, a non-unique equilibrium distribution constrained by a set of linear moments
and the use of interpolated nodes. Prendergast and Xu [17], Kim et al. [18] and Kotelnikov and
Montgomery [19] used Bhatnagar–Gross–Krook-type models to establish a new type of flux and
employed TVD flux limitation with the neighboring cells. Renda et al. [20], Vahala et al. [21],
Sun [22], De Cicco et al. [23], Mason [24, 25], Kataoka [26, 27] and Yan [28–30] proposed
many models by using additional techniques to obtain a higher Mach number for compressible
flows.

It is well known that many techniques can be used to simulate the compressible flows [31–35], for
example, the finite volume method with unstructured meshes is used to fit complex boundaries [31];
the total variation diminishing (TVD) [32]; the essentially non-oscillatory (ENO) [33] methods are
used to minimize numerical diffusions and non-physical oscillatory effects; the meshless method
can remove the restrictions of grid meshes [34]; and the level set method can be used to trace
moving boundaries [35]. When these schemes are applied to a shock wave tube problem, a very
high resolution for the shock will be required, especially in TVD-type schemes. However, the
contact discontinuity is still spread over typically three to four grid cells. For the Eulerian finite-
difference method, the contact discontinuities are more difficult to compute with high resolution
than in the case of a shock, since they do not have a natural compression mechanism to sharpen the
numerical resolution. The LBM can offer an ideal numerical effect and a new insight [28]. Here,
we focus on the compressible Euler equations and its simulation by using the lattice Boltzmann
model.

A fundamental problem needs to be solved in the compressible lattice Boltzmann model, which
is how to describe the compressible Euler equations with second-order accuracy in the truncation
error. In References [28] and [30], the first-order Euler equations and the second-order Navier–
Stokes equations are proposed, respectively. Nevertheless, higher than second-order Navier–Stokes
equations contain non-physical viscosity. In fact, these lattice Boltzmann models in References
[28, 30] are the first-order Euler equations model. In this paper, the target is to propose a second-
order Euler equation model. To solve this problem, a simple strategy is to modify the second-order
Navier–Stokes equations model by using a ghost field distribution. The role of the ghost field is
to remove the physical viscosity.

The main target of this paper can be divided into two parts: (1) to propose a new lattice
Boltzmann model for the second-order compressible Euler equations by using the ghost field and
(2) to obtain the equilibrium distribution functions of the ghost field.
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In the next section, the three-energy-level lattice Boltzmann model is described. In Section 3,
we contribute the Euler equations by using a ghost field distribution. In Section 4, we simulate
some numerical examples by using this lattice Boltzmann model, and Section 5 gives conclusions.

2. LATTICE BOLTZMANN MODEL

2.1. Lattice Boltzmann equation

Let us consider a two-layer one-dimensional lattice with four links that connect the center site
to four neighbor nodes on every layer. We assume that the particles moving along the link with
velocity e� are divided into two kinds, A and B, with different energy levels �A (�=1, . . . ,4) and
�B (�=5, . . . ,8), and �=0 is the rest particles possessing energy level �D . Hence, it is actually a
nine-bit model with three speeds 0,c,2c, where c is the speed of the particles at the face center:
|e�|=c (�=1,2,5,6), |e�|=2c (�=3,4,7,8) and |e0|=0; see Figure 1.

We define F�(x, t) as the distribution function at site x, and time t , with velocity e�. The
distribution function F�(x, t) consists of two parts: particle distribution function f�(x, t) and ghost
field distribution function g�(x, t) [36], namely

F�(x, t)= f�(x, t)+g�(x, t) (1)

The macroscopic quantities of mass, momentum and total energy per site are defined as follows:

�≡∑
�
F� (2)

�u≡∑
�
e�F� (3)

1

2
�u2+�E≡∑

�
F��� (4)

where E is the internal energy of every unit mass. �� is the energy level [28, 30], and it has three
numerical values �A,�B and �D . The lattice Boltzmann equations are expressed as

F�(x+e�, t+1)=F�(x, t)− 1

�
[F�(x, t)−Feq

� (x, t)] (5)

where � is the single relaxation time, Feq
� (x, t) is the local equilibrium distribution function at site

x, and time t , with velocity e�.
We assume that the equilibrium distribution function Feq

� (x, t) is the sum of two parts

Feq
� = f eq� +geq� (6)

Figure 1. Schematic diagram of lattice, (a) type A and (b) type B.
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and meets the conservation conditions ∑
�
Feq

� =� (7)

∑
�
e�F

eq
� =�u (8)

∑
�
Feq

� �� = 1

2
�u2+�E (9)

In Equation (6), f eq� (x, t), geq� (x, t) are the local equilibrium distribution function and the local
ghost field equilibrium distribution function at site x, and time t , with velocity e�. The local ghost
field equilibrium distribution function geq� (x, t) is given in the next section. We assume that f eq�
has the following form:

f eq� = A′
0�+A′

2�ue�+A′
6�u

2+A′
7�u

3e3� (�=1,2), �� =�A

f eq� = A′′
0�+A′′

2�ue�+A′′
6�u

2+A′′
7�u

3e3� (�=3,4), �� =�A

f eq� = B ′
0�+B ′

2�ue�+B ′
6�u

2+B ′
7�u

3e3� (�=5,6), �� =�B

f eq� = B ′′
0�+B ′′

2�ue�+B ′′
6�u2+B ′′

7�u3e3� (�=7,8), �� =�B

f eq0 =D0�+D6�u
2 (�=0), �� =�D

where coefficients A′
�, A

′′
�, B

′
�, B

′′
� (�=0,2,6,7),D� (�=0,6) are determined by a set of reason-

able requirements. These requirements consist of the conservation laws of mass, momentum, energy
and the conditions of the higher-order moments [30]:∑

�
f eq� =� (10)

∑
�

f eq� e� =�u (11)

∑
�

f eq� �� = 1

2
�u2+�E (12)

�0≡∑
�

f eq� e�e� =�u2+ p (13)

Q0≡∑
�

f eq� e��� =
(
1

2
�u2+�E+ p

)
u (14)

P0≡∑
�

f eq� e3� =�u3+3pu (15)

R0≡∑
�

f eq� e2��� = 1

2
�u4+(2�−1)�Eu2+ 1

2
(�−1)�u2E+(�−1)��E2 (16)

where p is the pressure of the perfect gas, which is given by

p=(�−1)�E (17)

Here � is the specific-heat ratio.
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2.2. Coefficients in the equilibrium distribution function f eq�

Substituting the equilibrium distribution function f eq� into (10)–(16), we obtain four groups of
linear equations for determining the coefficients of f eq� . They can be expressed as four equations
with variable parameters.

The first equation is

b(A′
�	�c

4
1+A′′

�
�c
4
2+B ′

�	�c
4
1+B ′′

�
�c
4
2)+��D0+��D6= z�, �=0,2,6,7 (18)

Here the parameters are

	0=c−4
1 ,
0=c−4

2 ,�0=1,�0=0, z0=1; 	2=c−2
1 ,
2=c−2

2 ,�2=0,�2=0, z2=1

	6=c−4
1 ,
6=c−4

2 ,�6=0,�6=1, z6=0; 	7=1,
7=1,�7=0,�7=0, z7=0

The second equation is

b(A′
�	�c

6
1+A′′

�
�c
6
2+B ′

�	�c
6
1+B ′′

�
�c
6
2)= z�, �=0,2,6,7 (19)

Here the parameters are

	0=c−4
1 ,
0=c−4

2 , z0= p/�; 	2=c−2
1 ,
2=c−2

2 , z2=3(�−1)E

	6=c−4
1 ,
6=c−4

2 , z6=1; 	7=1,
7=1, z7=1

The third equation is

b(A′
��A+A′′

��A+B ′
��B +B ′′

��B)+��D0�D+��D6�D = z�, �=0,6 (20)

Here the parameters are

�0=1,�0=0, z0=E; �6=0,�6=1, z6= 1
2

The fourth equation is

b(A′
��A	�c

4
1+A′′

��A
�c
4
2+B ′

��B	�c
4
1+B ′′

��B
�c
4
2)= z�, �=0,2,6,7 (21)

Here the parameters are

	0=c−2
1 ,
0=c−2

2 , z0=�(�−1)E2; 	2=c−2
1 ,
2=c−2

2 , z2=�E

	6=c−2
1 ,
6=c−2

2 , z6= 1
2u

2+ 1
2 (5�−3)E; 	7=1,
7=1, z7= 1

2

In order to obtain these coefficients in the equilibrium distribution, we have to propose some
man-made complementary conditions. We assume that the particles in type A make the same
contribution as the particles in type B for the moments of the equilibrium distribution function.
We have the following assumptions, respectively:

A′
��A+B ′

��B =m�(A
′′
��A+B ′′

��B)= z�, �=0,2,6,7 (22)
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Here the parameters are

m0=4, z0= �(�−1)

2bc2
E2; m2=4, z2= �E

2bc2
; m6=4

z6= 1

2bc2

[
1

2
u2+ 1

2
(5�−3)E

]
; m7=16, z7= 1

4bc4

Thus, we obtain

A′
0= 1

�A−�B

{
�(�−1)E2D

2bc2
+ �B pD

3�bc2
− 4�B

3b
+ 4�B
3b�D

[
E− 5�(�−1)E2D

8c2

]}
(23)

B ′
0= 1

�A−�B

{
−�(�−1)E2D

2bc2
− �A pD

3�bc2
+ 4�A

3b
− 4�A
3b�D

[
E− 5�(�−1)E2D

8c2

]}
(24)

A′′
0 = 1

�A−�B

{
�(�−1)E2D

8bc2
− �B pD

3�bc2
+ �B
3b

− �B
3b�D

[
E− 5�(�−1)E2D

8c2

]}
(25)

B ′′
0 = 1

�A−�B

{
−�(�−1)E2D

8bc2
+ �A pD

3�bc2
− �A
3b

+ �A
3b�D

[
E− 5�(�−1)E2D

8c2

]}
(26)

D0=
[
E− 5

8c2
�(�−1)E2

]
1

�D
(27)

A′
2= 1

�B −�A

[
4c2−3(�−1)E

3bc4
�B − �E

2bc2

]
(28)

B ′
2= 1

�A−�B

[
4c2−3(�−1)E

3bc4
�A− �E

2bc2

]
(29)

A′′
2 = 1

�B −�A

[
3(�−1)E−c2

12bc4
�B − �E

8bc2

]
(30)

B ′′
2 = 1

�A−�B

[
3(�−1)E−c2

12bc4
�A− �E

8bc2

]
(31)

A′
6 = 1

�B−�A

{
− �B
3bc2

− 4�B
3b�D

[
1

2
− 5

8c2

(
1

2
u2+5

2
�E− 3

2
E

)]

− 1

2bc2

(
1

2
u2+ 5

2
�E− 3

2
E

)}
(32)

A′′
6 = 1

�B −�A

{
�B
3bc2

+ �B
3b�D

[
1

2
− 5

8c2

(
1

2
u2+ 5

2
�E− 3

2
E

)]

− 1

8bc2

(
1

2
u2+ 5

2
�E− 3

2
E

)}
(33)
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B ′
6 = 1

�A−�B

{
− �A
3bc2

− 4�A
3b�D

[
1

2
− 5

8c2

(
1

2
u2+ 5

2
�E− 3

2
E

)]

− 1

2bc2

(
1

2
u2+ 5

2
�E− 3

2
E

)}
(34)

B ′′
6 = 1

�A−�B

{
�A
3bc2

+ �A
3b�D

[
1

2
− 5

8c2

(
1

2
u2+ 5

2
�E− 3

2
E

)]

− 1

8bc2

(
1

2
u2+ 5

2
�E− 3

2
E

)}
(35)

D6= 1

�D

{
1

2
− 5

8c2

[
1

2
u2+ 1

2
(5�−3)E

]}
(36)

A′
7= 1

�B −�A

(
− �B
3bc6

− 1

4bc4

)
(37)

B ′
7= 1

�A−�B

(
− �A
3bc6

− 1

4bc4

)
(38)

A′′
7 = 1

�B −�A

(
�B

48bc6
− 1

64bc4

)
(39)

B ′′
7 = 1

�A−�B

(
�A

48bc6
− 1

64bc4

)
(40)

3. GHOST FIELD DISTRIBUTION AND THE EULER EQUATIONS

3.1. Higher-order moments of the ghost field distribution functions

According to Equations (7)–(12), the ghost field distribution g� has the following feature [36]:∑
�
geq� =0 (41)

∑
�
geq� e� =0 (42)

∑
�
geq� �� =0 (43)

The meaning is that the macroscopic mass, momentum and energy of the ghost field distribution
g� are zero. We also assume that its momentum-flux and energy-flux are zero, say,∑

�
geq� e�e� =0 (44)

∑
�
geq� e��� =0 (45)
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In order to remove the nonphysical viscosity, we design the higher-order moments of the ghost
field distribution g� as ∑

�
geq� e3� = P ′ (46)

∑
�
geq� e2��� = R′ (47)

where functions P ′ and R′ are determined by the viscous term according to the macroscopic
equation. In Equations (41)–(47), these higher-order moments are zero except

∑
� g

eq
� e3� = P ′ �=0

and
∑

� g
eq
� e2��� = R′ �=0; therefore, g� is named as ghost field distribution.

We assume that the ghost field equilibrium distribution function geq� has the following form:

geq� =a′
0�+a′

2�ue�+a′
6�u

2+a′
7�u

3e3� (�=1,2), �� =�A

geq� =a′′
0�+a′′

2�ue�+a′′
6�u

2+a′′
7�u

3e3� (�=3,4), �� =�A

geq� =b′
0�+b′

2�ue�+b′
6�u

2+b′
7�u

3e3� (�=5,6), �� =�B

geq� =b′′
0�+b′′

2�ue�+b′′
6�u

2+b′′
7�u

3e3� (�=7,8), �� =�B

geq0 =d0�+d6�u
2 (�=0), �� =�D

where coefficients a′
�,a

′′
�,b′

�,b
′′
� and d� are determined by Equations (41)–(47) and a set of reason-

able man-made conditions.

3.2. Coefficients in the equilibrium distribution of the ghost field

Substituting the equilibrium distribution function geq� into (41)–(47), we obtain four groups of
linear equations for determining the coefficients of geq� . They can be expressed as four equations
with variable parameters.

The first equation is

b(a′
�	�c

4
1+a′′

�
�c
4
2+b′

�	�c
4
1+b′′

�
�c
4
2)+��d0+��d6=0, �=0,2,6,7 (48)

Here the parameters are

	0=c−4
1 ,
0=c−4

2 ,�0=1,�0=0; 	2=c−2
1 ,
2=c−2

2 ,�2=0,�2=0

	6=c−4
1 ,
6=c−4

2 ,�6=0,�6=1; 	7=1,
7=1,�7=0,�7=0

The second equation is

b(a′
��A+a′′

��A+b′
��B +b′′

��B)+d��D =0, �=0,6 (49)

The third equation is

a′
�	�c

4
1+a′′

�
�c
4
2+b′

���c
4
1+b′′

���c
4
2 =0, �=0,2,6,7 (50)
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Here the parameters are

	0=c−2
1 ,
0=c−2

2 ,�0=c−2
1 ,�0=c−2

2 ; 	2=c−2
1 �A,
2=c−2

2 �A,�2=c−2
1 �B,�2=c−2

2 �B

	6=c−2
1 ,
6=c−2

2 ,�6=c−2
1 ,�6=c−2

2 ; 	7=�A,
7=�A,�7=�B,�7=�B

The fourth equation is

�ub(a′
2c

4
1+a′′

2c
4
2+b′

2c
4
1+b′′

2c
4
2)+�u3b(a′

7c
6
1+a′′

7c
6
2+b′

7c
6
1+b′′

7c
6
2) = P ′

b�(a′
0�Ac

2
1+a′′

0 �Ac
2
2+b′

0�Bc
2
1+b′′

0�Bc
2
2)+�u2b(a′

6�Ac
2
1+a′′

6 �Ac
2
2+b′

6�Bc
2
1+b′′

6�Bc
2
2) = R′ (51)

In order to obtain these coefficients in the equilibrium distribution geq� , we have to propose
some artificial complementary conditions. We assume that the particles in type A make the same
contribution as the particles in type B for the moments of the ghost field equilibrium distribution
function. We have the following assumptions:

a′
��A+b′

��B =m�(a
′′
��A+b′′

��B), �=0,2,6,7, m0=4, m2=4, m6=4, m7=16 (52)

and

a′
�+b′

� =n�(a
′′
� +b′′

�), �=6,7, n6=4, n7=16 (53)

Thus, we have

a′
0= 1

�B −�A

R′

2�bc2

(
5�B
3�D

−1

)
(54)

b′
0= 1

�A−�B

R′

2�bc2

(
5�A
3�D

−1

)
(55)

a′′
0 =− 1

�B −�A

R′

8�bc2

(
5�B
3�D

+1

)
(56)

b′′
0 =− 1

�A−�B

R′

8�bc2

(
5�A
3�D

+1

)
(57)

d0=− 5R′

8�c2�D
(58)

a′
2=− 1

�B −�A

P ′�B
3�ubc4

(59)

b′
2=− 1

�A−�B

P ′�A
3�ubc4

(60)

a′′
2 = 1

�B −�A

P ′�B
12�ubc4

(61)

b′′
2 = 1

�A−�B

P ′�A
12�ubc4

(62)
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a′
6=b′

6=a′′
6 =b′′

6 =0 (63)

d6=0 (64)

a′
7=b′

7=a′′
7 =b′′

7 =0 (65)

3.3. One-dimensional Euler equations with second-order accuracy

Using a small parameter k as the time step in numerical simulation, we take it equal to the Knudsen
number [6]. The lattice Boltzmann equation in physical unit is

F�(x+ke�, t+k)−F�(x, t)=−1

�
(F�(x, t)−Feq

� (x, t)) (66)

The Chapman–Enskog expansion [37] is applied to F�(x, t) under the assumption of the small
Knudsen number k,

F� =
∞∑
n=0

knFn
� =F0

� +kF1
� +k2F2

� +·· · (67)

In Equation (67) F0
� is Feq

� . We discuss the changes in different time scales, introduced as t0, t1, . . .;
thus,

t0= t, t1=kt, t2=k2t, t3=k3t . . .

and

�
�t

= �
�t0

+k
�

�t1
+k2

�
�t2

+k3
�

�t3
+k4

�
�t4

+O(k5) (68)

Performing the Taylor expansion upon Equation (66), and retaining terms up to O(k5), we
obtain a series of lattice Boltzmann equations in different time t0, t1, t2 scales [6]:

�Feq
�

�t0
+e�

�Feq
�

�x
=−1

�
F1

� (69)

�Feq
�

�t1
+

(
1

2
−�

)(
�

�t0
+e�

�
�x

)2

Feq
� =−1

�
F2

� (70)

�Feq
�

�t2
+(1−2�)

(
�

�t0
+e�

�
�x

)
�Feq

�

�t1
+

(
�2−�+ 1

6

)(
�

�t0
+e�

�
�x

)3

Feq
� =−1

�
F3

� (71)

�Feq
�

�t3
+

(
1

2
−�

)
�2

�t21
Feq

� +2

(
1

2
−�

)(
�

�t0
+e�

�
�x

)
�

�t2
Feq

�

+3

(
�2−�+ 1

6

)(
�

�t0
+e�

�
�x

)2 �
�t1

Feq
�

+
(

−�3+ 3

2
�2− 7

12
�+ 1

24

)(
�

�t0
+e�

�
�x

)4

Feq
� =−1

�
F4

� (72)
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To derive the equations for �,�u and 1
2�u

2+�E to first order in k, a summation of Equation (69)
with respect to � is taken to give the first-order macroscopic equations. This equation is named as
the conservation laws in the first time scale t0,

��

�t0
+ ��u

�x
=0 (73)

��u

�t0
+ ��0

�x
=0 (74)

�( 12�u
2+�E)

�t0
+ �Q0

�x
=0 (75)

The second-order macroscopic equations are obtained by taking (69)+(70)×k and summation
over �. Thus, we have

��

�t
+ ��u

�x
=O(k2) (76)

��u

�t
+ ��0

�x
=k

(
�− 1

2

)
�
�x

[
�P ′

�x
+(�−1)(3−�)�E

�u
�x

]
+O(k2) (77)

�
(
1

2
�u2+�E

)
�t

+ �Q0

�x
= k

(
�− 1

2

)
�
�x

[
�R′

�x
+(�−1)(3−�)�Eu

�u
�x

+�(�−1)�E
�E
�x

]

+O(k2) (78)

when functions P ′ and R′ satisfy the following conditions:

�P ′

�x
=−(�−1)(3−�)�E

�u
�x

(79)

�R′

�x
=−(�−1)(3−�)�Eu

�u
�x

−�(�−1)�E
�E
�x

(80)

The Euler equations with second-order accuracy are obtained as

��

�t
+ ��u

�x
=O(k2) (81)

��u

�t
+ �(�u2+ p)

�x
=O(k2) (82)

�( 12�u
2+�E)

�t
+ �( 12�u

3+��Eu)

�x
=O(k2) (83)
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In Equations (81)–(83), we can use the finite difference method to find the numerical solutions of
P ′ and R′. The first-order difference schemes are

P ′
j+1= P ′

j +�x
�P ′

j

�x
(84)

R′
j+1= R′

j +�x
�R′

j

�x
(85)

The second-order difference schemes are

P ′
j+1= P ′

j +�x
�P ′

j

�x
+ 1

2
�x2

�2P ′
j

�x2
(86)

R′
j+1= R′

j +�x
�R′

j

�x
+ 1

2
�x2

�2R′
j

�x2
(87)

4. NUMERICAL EXAMPLES

In this section four famous test problems [17] are simulated to examine the performance of this
model.

4.1. The Sod problem

In the Sod problem, the initial condition (at t=0.0) is defined by

(�,u, p) = (1.0,0.0,1.0) if 0.0�x�0.5

(�,u, p) = (0.125,0.0,0.1) if 0.5<x�1.0
(88)

The results of the density �, pressure p, velocity u and the internal energy E calculated by using
the LBM at the time t=100�t are plotted in Figures 2 and 3. In this numerical experiment, the
time step is �t=�x/c=1.667×10−3. The boundary conditions at the two ends are Dirichlet
conditions. The internal energy E is calculated by E= p/�(�−1). In addition, the variables P ′
and R′ are computed by using the first-order difference scheme (84)–(85) in Figure 2 and the
second-order difference scheme (86)–(87) in Figure 3. In these two figures, the same values for
parameters are selected.

By comparing these results with the exact solutions, we find the shock waves and the contact
discontinuities are spread over typically three to four grid cells in Figure 2 and two to three grid
cells in Figure 3. The two figures show that the method with first-order scheme has slightly higher
resolution than the LBM method in Reference [28] and the result from the second-order scheme
in Figure 3 is higher in resolution than that from the first-order scheme in Figure 2.

We also plot the curves of the infinite norm of the relative error ‖Er‖∞ =max1� j�m |(uN−
uE)/uE| versus the Knudsen number k for the example (uN is the numerical result by lattice
Boltzmann model, and uE is the exact solution); see Figure 4. This figure shows the relations
between ‖Er‖∞ and the Knudsen number k. We find that the result of the second-order difference
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Figure 2. Comparison of the exact solution and the LBM results of one-dimensional Sod problem.
Solid lines are exact solutions, and circles are LBM results: (a) density; (b) pressure; (c) velocity; and
(d) internal energy. The parameters are �=1.4,c=3.0,�=1.51,�A =2c2,�B =0.6c2,�D =0.13c2,
lattice size=200 and time t=100�t . The variables P ′ and R′ are computed by using the

first-order difference schemes (84)–(85).

schemes for P ′ and R′ is better than the first-order method. This figure provides some qualitative
trends for the numerical order of convergence.

4.2. The Lax problem

The initial condition (at t=0.0) for Lax problem is

(�,u, p) = (0.445,0.698,3.528) if 0.0�x�0.5

(�,u, p) = (0.5,0.0,0.571) if 0.5<x�1.0
(89)

In the numerical experiments for Lax problem, the time step is also �t=�x/c=1.667×10−3.
The boundary conditions at the two ends of the domain are Dirichlet conditions. The results of
LBM and exact solutions are shown as the density �, pressure p, velocity u and the internal energy
E at the time t=100�t in Figures 5 and 6. The internal energy E is calculated by E= p/�(�−1).
In Figure 5, the difference scheme for the variables P ′ and R′ is the first order and expressed
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Figure 3. Comparison of the exact solution and the LBM results of one-dimensional Sod problem.
Solid lines are exact solutions, and circles are LBM results: (a) density; (b) pressure; (c) velocity;
and (d) internal energy. The parameters are �=1.4,c=3.0,�=1.51,�A =2c2,�B =0.6c2,�D =0.13c2.
The lattice size is 200, and time t=100�t . The variables P ′ and R′ are computed by using

second-order difference schemes (86)–(87).

as (84)–(85), and Figure 6 shows the results from the second-order difference scheme for P ′ and
R′ (86)–(87). In these two figures, the solid lines are the exact solutions, and circles are LBM
results: (a) density; (b) pressure; (c) velocity; and (d) internal energy. The parameters are �=1.4,
c=3.0, �=1.51, �A=2c2, �B =0.6c2, �D =0.13c2 and the lattice size is 200.

In Figure 6, we can see the shock waves and the contact discontinuities are spread over typically
two to three grid cells. By comparing with the results in Figure 5, this simulation with the second-
order difference scheme for the variables P ′ and R′ is of slightly higher accuracy and resolution
than that with the first-order difference scheme for P ′ and R′.

4.3. The Roe problem, case I

The initial condition (at t=0.0) for Roe problem is defined as

(�,u, p) = (1.0,−1.0,1.8) if 0.0�x�0.5

(�,u, p) = (1.0,1.0,1.8) if 0.5<x�1.0
(90)
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Figure 4. The curves of the infinite norm of the relative error Er=|(uN−uE)/uE| versus
the Knudsen number k to example 1. The parameters are �=1.4,c=3.0, �=1.51,�A =2c2,

�B =0.6c2,�D =0.13c2 and the lattice size is 200.

The results for Roe problem of case I is shown as the form of the density �, pressure p, velocity u
and the internal energy E at the time t=100�t in Figures 7 and 8. Our numerical experiments show
that for Roe problem the time step is �t=�x/c=1.667×10−3. Dirichlet boundary conditions
are adopted at the two ends. The expression for the internal energy E is E= p/�(�−1), too.
Figures 7 and 8 display the results from the first- and second-order difference schemes for P ′ and
R′ separately. In the two figures, the solid lines are exact solutions, and circles are LBM results:
(a) density; (b) pressure; (c) velocity; and (d) internal energy. The parameters are �=1.4, c=3.0,
�=1.35, �A=2c2,�B =0.6c2, �D =0.1c2. The lattice size is 200.

The result in Figure 7 is better than the result found in Reference [17]. The simulation with
second-order difference scheme for the variables P ′ and R′ in Figure 8 is slightly higher in accuracy
and resolution than the first-order difference scheme results.

4.4. The Roe problem, case II

The initial condition (at t=0.0) for the problem is

(�,u, p) = (1.0,−2.0,0.4) if 0.0�x�0.5

(�,u, p) = (1.0,2.0,0.4) if 0.5<x�1.0
(91)

The numerical simulation is limited to a near-vacuum case, namely, the near-vacuum region
contains the flow. It is known that the density and pressure always take a positive value. An
available technique is, for this case, to assume a limit on the relaxation factor, when the density
�/�0<k̃, then the collision vanishes, where �0 is the characteristic density, and k̃ is a limit of the
ratio of � to �0 [38].

In this model, the mean free path l is equal to c ·k. We assume that the gas is near-vacuum if
collision does not occur in the range of l. However, if we delay the time, i.e. increase the collision
time, collisions will surely occur. Therefore, we define the vacuum as a region where there are no
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Figure 5. Comparison of the exact solution and the LBM results of one-dimensional Lax problem.
Solid lines are exact solutions, and Circles are LBM results: (a) density; (b) pressure; (c) velocity;
and (d) internal energy. The parameters are �=1.4,c=3.0,�=1.51,�A =2c2,�B =0.6c2,�D =0.13c2.
The lattice size is 200, and time t=100�t . The variables P ′ and R′ are computed by using

first-order difference schemes (84)–(85).

particle collisions in the interval of t to t+�t , Thus, the limitation of the relaxation factor may
be expressed as

�̃=

⎧⎪⎨
⎪⎩

�,
�

�0
<k̃

∞,
�

�0
>k̃

(92)

The results of the density � and pressure p calculated by using LBM at the time t=50�t
are shown in Figure 9(a) and (b), respectively. For this problem, the time step is �t=�x/c=
1.667×10−3. The boundary conditions are Dirichlet conditions. The internal energy E is calculated
by E= p/�(�−1). The variables P ′ and R′ are computed by using first-order difference schemes
(84)–(85). In this figure, the parameters are �=1.4,c=3.0,�=1.31,�A=6.5c2,�B =2.0c2,�D =
0.02c2, k̃=k, and the lattice size is 200. This method is of slightly higher resolution than the LBM
method in Reference [28].
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Figure 6. Comparison of the exact solution and the LBM results of one-dimensional Lax problem.
Solid lines are exact solutions, and circles are LBM results: (a) density; (b) pressure; (c) velocity;
and (d) internal energy. The parameters are �=1.4,c=3.0,�=1.51,�A =2c2,�B =0.6c2,�D =0.13c2.
The lattice size is 200, and time t=100�t . The variables P ′ and R′ are computed by using

second-order difference schemes (86)–(87).

Figure 10(a) and (b) shows the results of the density � and pressure p calculated by using LBM
at the time t=50�t with the second-order difference scheme for the variables P ′ and R′ (86)–(87).
The parameters are the same as those in Figure 9 except k̃=0.1k. The simulation with second-order
difference scheme for the variables P ′ and R′ has slightly higher accuracy and resolution than the
first-order difference scheme ones.

4.5. The comparisons between the first-order model and the second-order model

In this paper, we proposed an LBM for the second-order compressible Euler equations. In compar-
ison with the first-order model in Reference [28], it has higher accuracy and better resolution.
From Figures 2–5, we found that (1) the widths of the shock waves are about three to four cells
when using the first-order difference scheme (84)–(85), and two to three cells when using the
second-order difference scheme (86)–(87). (2) The errors at the contact discontinuities appearing
in the first-order model have been eliminated. (3) The non-physical oscillation in the front of the
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Figure 7. Comparison of the exact solution and the LBM results of one-dimensional Roe problem.
Solid lines are exact solutions, and circles are LBM results: (a) density; (b) pressure; (c) velocity;
and (d) internal energy. The parameters are �=1.4,c=3.0,�=1.35,�A =2c2,�B =0.6c2,�D =0.13c2.
The lattice size is 200, and time t=100�t . The variables P ′ and R′ are computed by using

first-order difference schemes (84)–(85).

shock wave has been weakened. The viscous term is a non-physical term and a positive numerical
viscous term. It can weaken the oscillation in the front of the shock wave. This non-physical term
is the crux of the matter for the second-order Euler equations. In other words, by comparison
of the current results with those in Reference [30], the improvement of the numerical results is
obvious. Table I shows the L1 norm errors in our lattice Boltzmann model and other schemes.

In Table I, a detailed comparison between the lattice Boltzmann schemes and the traditional
difference scheme is given. These traditional schemes contain [39]
1. The first-order Lax–Friedrichs scheme (LxF).
2. The ordinary non-staggered non-oscillatory central difference scheme (ORD).
3. The Harten’s second-order accuracy upwind scheme (ULT1).
4. The Harten’s second-order accuracy upwind with artificial compressible second-order added

to ULT1, named as ULTC.
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Figure 8. Comparison of the exact solution and the LBM results of one-dimensional Roe problem.
Solid lines are exact solutions, and circles are LBM results: (a) density; (b) pressure; (c) velocity;
and (d) internal energy. The parameters are �=1.4,c=3.0,�=1.35,�A =2c2,�B =0.6c2,�D =0.1c2.
The lattice size is 200, and time t=100�t . The variables P ′ and R′ are computed by using

second-order difference schemes (86)–(87).

5. The second-order staggered non-oscillatory central difference scheme (STG).
6. The STG scheme with a limiter value. This scheme is referred to as STG2.
7. The STG scheme with the component-wise unify non-oscillatory scheme. This scheme is

referred to as STGU.
8. The STG scheme with the artificial compression method. This scheme is referred to as STGC.
9. The upwind Godunov scheme is referred to as ROE.

We simulated the Sod and the Lax problems by using the lattice Boltzmann model. Two
difference schemes are used for the variables P ′ and R′. We observe that our LBM schemes,
first-order difference schemes (84)–(85) and second-order difference scheme (86)–(87) P ′ and R′,
the first-order scheme and LBM in Reference [30] is similar, though the discontinuity is more than
two to three cells. However, the second-order scheme possesses more resolution and accuracy and
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Figure 9. Comparison of the exact solution and the LBM results of one-dimensional Roe problem with
a near-vacuum region. Solid lines are exact solutions, and circles are LBM results: (a) density and
(b) pressure. The parameters are �=1.4,c=3.0,�=1.31,�A =6.5c2,�B =2.0c2,�D =0.02c2, k̃=k,
the lattice size is 200, and time t=50�t . The variables P ′ and R′ are computed by using

first-order difference schemes (84)–(85).

Figure 10. Comparison of the exact solution and the LBM results of one-dimensional Roe problem
with a near-vacuum region. Solid lines are exact solutions, and circles are LBM results: (a) density and
(b) pressure. The parameters are �=1.4,c=3.0,�=1.31,�A =6.5c2,�B =2.0c2,�D =0.02c2, k̃=0.1k,
the lattice size is 200, and time t=50�t . The variables P ′ and R′ are computed by using

second-order difference schemes (86)–(87).

is the same as the schemes STGU and STGC. We note that when this model is applied to the Roe
problem, the results are better than the results in Reference [28]. The ‘tip’ in the contact interface
in the Roe problem case I is polished, and the model can restrain the negative value automatically
in the near-vacuum region in the Roe problem case II.
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Table I. L1 norm errors of the Sod problem and the Lax problem.

The Sod problem (t=0.1644), The Lax problem (t=0.16),
lattice size=200 lattice size=200

Density Velocity Pressure Density Velocity Pressure

Reference [28] 0.00804 0.01673 0.00792 0.03051 0.01937 0.04901
Reference [30] 0.00521 0.00852 0.00376 0.01622 0.01205 0.01403
This model with
first-order differ-
ence scheme

0.00509 0.00784 0.00427 0.01486 0.01321 0.01336

This model with
second-order
difference
scheme

0.00193 0.00334 0.00251 0.00545 0.01086 0.00923

LxF 0.01769 0.02814 0.01582 0.06165 0.05557 0.06537
ORD 0.00578 0.00959 0.00460 0.02231 0.01709 0.01995
ULT1 0.00437 0.00820 0.00362 0.01477 0.01049 0.01206
STG2 0.00297 0.00494 0.00228 0.01151 0.00849 0.00988
STGU 0.00291 0.00403 0.00216 0.01302 0.01306 0.01121
STGC 0.00172 0.00276 0.00153 0.00647 0.00836 0.00823
ULTC 0.00361 0.00804 0.00362 0.00872 0.01074 0.01183
ROE 0.00836 0.01145 0.00666 0.02827 0.02192 0.02655

These results come from Reference [39], except three LBM results. The underlined results indicate the smallest
L1 norm errors in every column.

5. CONCLUSIONS

In this paper, we proposed a new lattice Boltzmann model for the compressible Euler equations.
The new model is based on a three-energy-level and three-speed lattice Boltzmann equation by
using a method of higher moments of the equilibrium distribution functions. In order to remove the
terms (�−1)(3−�)�E�u/�x and (�−1)(3−�)�Eu�u/�x+�(�−1)�E�E/�x , we put an additional
distribution function, called the ghost field distribution function. As an essential step, the local
ghost field equilibrium distribution must satisfy the conservation conditions and conditions of
higher-order moments Equations (41)–(47).

In order to obtain the coefficients in the equilibrium distribution, we propose some man-made
complementary conditions. It is a simple strategy to determine the coefficients that such assump-
tions are employed. Of course, the assumptions are not unique, and the effects of other artificial
complementary conditions remain to be considered.

The main targets of the paper are listed as: (1) Instead of building an LBM for the Navier–
Stokes equations, we propose a new lattice Boltzmann model for the second-order compressible
Euler equations by using the ghost field. (2) We obtain the equilibrium distribution functions of
the ghost field. It is the fundamental law that develops the lattice Boltzmann model for two- and
three-dimensional Euler equations.

In this paper, we compare the numerical results with those obtained by traditional methods.
Our model may not be a high-resolution scheme, but it is still attractive. This model preserves the
main advantages of the available lattice Boltzmann model. If we apply classical high-resolution
techniques to the LBM, the scheme could be an interesting one.
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Finally, we point out that some problems remain to be solved: (1) how to find the variables P ′
and R′ computed by using the second-order difference scheme in two-dimensional models and (2)
how to obtain the rule between the man-made complementary conditions (22) and (52)–(53) and
the numerical results. We will discuss these problems in future papers.
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